Kinetic and Potential Energy Calculations

Examples:

1. A 35 kg boy is running down the street with a velocity of $5 \mathrm{~m} / \mathrm{s}$.
a. What type of energy does he have?
b. Calculate his energy.
2. A 500 kg boulder is sitting at the top of a 1000 m ledge.
a. What type of energy does it have?
b. Calculate the boulder's energy.
3. How much potential does a boy who weight 50 N have if he is 200 m from the earth?
4. A boy standing on the edge of a pool 5 m above the water has 400 J of potential energy.
a. What is that boy's weight?
b. What is that boy's mass?

Individual Practice:

1. You serve a volleyball with a mass of 2.1 kg . The ball leaves your hand with a speed of $30 \mathrm{~m} / \mathrm{s}$. The ball has \qquad energy. Calculate it.
2. A baby carriage is sitting at the top of a hill that is 21 m high. The carriage with the baby weighs 12 N . The carriage has \qquad energy. Calculate it.
3. A car is traveling with a velocity of $40 \mathrm{~m} / \mathrm{s}$ and has a mass of 1120 kg . The car has \qquad energy. Calculate it.
4. A cinder block is sitting on a platform 20 m high. It weighs 79 N . The block has \qquad energy. Calculate it.
5. There is a bell at the top of a tower 45 m high. The bell weighs 190 N . The bell has \qquad energy. Calculate it.
6. A roller coaster is at the top of a 72 m high hill and weighs 966 N . The coaster (at this moment) has \qquad energy. Calculate it.
7. What is the kinetic energy of a 3 kg ball that is rolling at a speed of $2 \mathrm{~m} / \mathrm{s}$?
8. The potential energy of an apple is 6.00 J . The apple is 3 m high.
a. What is the weight of the apple?
b. What is the apple's mass?
9. Two objects were lifted by a machine. One object had a mass of 2 kg , and was lifted at a speed of $2 \mathrm{~m} / \mathrm{s}$. The other had a mass of 4 kg and was lifted at a rate of $3 \mathrm{~m} / \mathrm{s}$.
a. Which object had more kinetic energy?
b. Which object has more potential energy at a height of 10 m ?
10. You are on roller blades on top of a small hill. Your potential energy is equal to $1,000 \mathrm{~J}$. The last time you checked your mass was 60 kg .
a. What is your weight in newtons?
b. What is the height of the hill?

Kinetic and Potential Energy Calculations

Examples:

1. A 35 kg boy is running down the street with a velocity of $5 \mathrm{~m} / \mathrm{s}$.
a. What type of energy does he have?
b. Calculate his energy.
2. A 500 kg boulder is sitting at the top of a 1000 m ledge.
a. What type of energy does it have?
b. Calculate the boulder's energy.
3. How much potential does a boy who weight 50 N have if he is 200 m from the earth?
4. A boy standing on the edge of a pool 5 m above the water has 400 J of potential energy.
a. What is that boy's weight?
b. What is that boy's mass?

Individual Practice:

1. You serve a volleyball with a mass of 2.1 kg . The ball leaves your hand with a speed of $30 \mathrm{~m} / \mathrm{s}$. The ball has \qquad energy. Calculate it.
2. A baby carriage is sitting at the top of a hill that is 21 m high. The carriage with the baby weighs 12 N . The carriage has \qquad energy. Calculate it.
3. A car is traveling with a velocity of $40 \mathrm{~m} / \mathrm{s}$ and has a mass of 1120 kg . The car has \qquad energy. Calculate it.
4. A cinder block is sitting on a platform 20 m high. It weighs 79 N . The block has \qquad energy. Calculate it.
5. There is a bell at the top of a tower 45 m high. The bell weighs 190 N . The bell has \qquad energy. Calculate it.
6. A roller coaster is at the top of a 72 m high hill and weighs 966 N . The coaster (at this moment) has \qquad energy. Calculate it.
7. What is the kinetic energy of a 3 kg ball that is rolling at a speed of $2 \mathrm{~m} / \mathrm{s}$?
8. The potential energy of an apple is 6.00 J . The apple is 3 m high.
a. What is the weight of the apple?
b. What is the apple's mass?
9. Two objects were lifted by a machine. One object had a mass of 2 kg , and was lifted at a speed of $2 \mathrm{~m} / \mathrm{s}$. The other had a mass of 4 kg and was lifted at a rate of $3 \mathrm{~m} / \mathrm{s}$.
a. Which object had more kinetic energy?
b. Which object has more potential energy at a height of 10 m ?
10. You are on roller blades on top of a small hill. Your potential energy is equal to $1,000 \mathrm{~J}$. The last time you checked your mass was 60 kg .
a. What is your weight in newtons?
b. What is the height of the hill?
