Toy Car Lab A

<u>Purpose</u>: To identify trends in graphs representing forward motion in relation to a starting and ending point.

Materials: Toy car, Tape, Meter Stick, Timer, Lab Sheet

Steps:

- 1. Place tape exactly 10 cm apart starting at 0 cm until you hit 100 cm.
- 2. Write the distance at each tape, marking the first piece at 0 as "Start".
- 3. Place your car at start and time it as it goes to 10 cm and record the time below.
- 4. Place the car back at start and time it as it goes to 20 cm and record the time.
- 5. Repeat until the car has reached 100 cm.

Т	able:	
_		

Dist. (cm)	10	20	30	40	50	60	70	80	90
Time (s)									
Speed									

<u>Graph:</u>

In your notebook, graph the data from the table. Be sure to label both axis and give the graph a title.

Conclusion Questions:

- 1. Calculate speed for each checkpoint, draw a conclusion about what happened to the speed as the car moved along the 100cm?
- 2. What does the slope of a distance vs. time graph represent?
- 3. If the graph gives a linear representation what type of motion is being shown?
- 4. What are the units for the slope of a distance vs. time graph?

Toy Car Lab B

<u>Purpose</u>: To identify trends in graphs representing forward and backwards motion in relation to a starting and ending point.

Materials: Toy car 1 and 2, Tape, Meter Stick, Timer, Lab Sheet

Steps:

- 1. Place tape exactly 10 cm apart starting at 0 cm until you hit 100 cm.
- 2. Write the distance at each tape, marking the first piece at 0 as "Start".
- 3. Place your car at start and time it as it goes to 10 cm and record the time below.
- 4. Place the car back at start and time it as it goes to 20 cm and record the time.
- 5. Repeat until the car has reached 100 cm.
- 6. Place your car at 100 cm and time it as it goes to 90 cm and record the time below.
- 7. Place the car back at 100 cm and time it as it goes to 80 cm and record the time.
- 8. Repeat until the car has reached start.

<u>Table:</u>

Dist. (cm)	10	20	30	40	50	60	70	80	90	100
Time Forward (s)										
Dist. (cm)	90	80	70	60	50	40	30	20	10	0
Time Backward (s)										

<u>Graph:</u>

In your notebook, graph the data from the table. Be sure to label both axis and give the graph a title.

Conclusion Questions:

- 1. Compare what occurred during the first 10 seconds to the last 10 seconds of each direction (forward and backwards).
- 2. What can the steepness of a line's slope tell you about it's motion compared to another line's less steep slope?