Force Diagrams

Force	Magnitude	Direction
Gravity (weight)	mobject*g (9.8 m/s2)	Downward (Always Draw!)
Balanced Forces	Equal and Opposite Forces	perpendicular to surface
Unbalanced Forces	Unequal and Opposite Forces	perpendicular to surface
Natural Force	Always present - opposite of gravity	Direction opposing relative gravity motion.

Steps for Drawing Force Diagrams

- 1. Identify the object you will draw a diagram for.
- 2. Identify <u>all the forces</u> acting directly on the object and the object exerting them.
- 3. Draw a the object (usually a box) to represent the object of interest.
- 4. Draw a vector to represent each force. Draw it in the direction the force is being exerted, and label it. Draw the size of the arrow based on the force exerted.

Example:

A mountain climber is practicing for the World Records. He climbs a cliff, stops to take a rest, show a force diagram that represents this rest stop example.

Force Diagrams

-	1	
Force	Magnitude	Direction
Gravity (weight)	mobject*g (9.8 m/s2)	Downward (Always Draw!)
Balanced Forces	Equal and Opposite Forces	perpendicular to surface
Unbalanced Forces	Unequal and Opposite Forces	perpendicular to surface
Natural Force	Always present - opposite of gravity	Direction opposing relative gravity motion.

Steps for Drawing Force Diagrams

- 5. Identify the object you will draw a diagram for.
- 6. Identify <u>all the forces</u> acting directly on the object and the object exerting them.
- 7. Draw a the object (usually a box) to represent the object of interest.
- 8. Draw a vector to represent each force. Draw it in the direction the force is being exerted, and label it. Draw the size of the arrow based on the force exerted.

Example:

A mountain climber is practicing for the World Records. He climbs a cliff, stops to take a rest, show a force diagram that represents this rest stop example.

Newton's Second Law:

- the acceleration of an object is equal to the net force acting on it divided by the object's mass
- Situation involves ______ forces

force = (mass) X (acceleration) OR F = ma (a = F/m) F = force, measured in Newton (N) kg \cdot m/s2 m = mass (kg) a = acceleration (m/s2)