Earth/Environmental Science

Unit 4: Formation of Earth and Geology

I can explain how the rock cycle, plate tectonics, volcanoes, and earthquakes impact the lithosphere.

Parts of the Earth

- Layers defined by composition
 Crust
 - Thin, <u>rocky outer</u> layer of Earth
 - Oceanic crust is
 7 km thick which
 is <u>thicker</u> than
 <u>continental</u>
 plates

Mantle

- 82% of the Earth's volume
- Solid rock at the <u>top, liquid</u> at the bottom

Layers defined by Physical Properties

- Lithosphere
 - The crust and uppermost mantle
 - Cool, <u>rigid</u> shell
 - 100 km thick
- Asthenosphere
 - Soft, comparatively weak layer
 - Below the lithosphere
 - Rock <u>close to</u> melting

Outer Core

Liquid layer 2260 km thick

Metallic iron generates
 Earth's <u>magnetic</u> field

Inner Core

- Solid layer having a radius of 1220 km
- <u>High</u> temperatures and <u>high</u> pressure
- Nickel mostly

What is a Rock?

Any solid mass of mineral or **mineral-like matter that occurs naturally as part of our planet**

- **3 types**
 - Igneous
 - Sedimentary
 - Metamorphic

Define these terms

Weathering

Compaction

Cementation

The Rock Cycle

Interactions among Earth's water, air, land, and living things can cause rocks to change from one type to another
A continuous process
Driven by heat and mechanical energy

The Rock Cycle

Igneous Rock -----> Sedimentary Rock

Sedimentary Rock -----> Metamorphic Rock

Metamorphic Rock -----> Igneous Rock

Metamorphic Rock -----> Sedimentary Rock

Plate Tectonics

What is Continental Drift

- Proposed by Alfred Wegener
 Stated that the continents had once been_joined to
 <u>form</u> a single supercontinent
- Wegener's Theory
 - Pangaea broke apart 200 MY
 - Continents "drifted"
 - Continents "broke" through the oceans

Pangaea

- Occurred 500 MY
- Continents
 breakup begins
 200 MY
- North America and Africa split 135 MY

Continental Drift Activity

Paste activity in your notebook

The European Flora

Alpine Mountains

Color Key Flora - Red C.Reptile - Yellow L. Reptile - Orange G. Plant - Green M. Reptile - Blue Mountains - Purple

Evidence of Continental Drift

Shorelines look like they **<u>fit</u>** together Fossil organisms found on different landmasses

Evidence of Continental Drift

Several <u>mountain</u> <u>belts</u> end at one coastline, only to reappear on a landmass across the ocean Ancient Climates

Matching Mountain Ranges

Glacier Evidence

The Theory of Plate Tectonics

Proposes that Earth's outer shell consist of **individual** plates that interact in various ways and thereby produce earthquakes, volcanoes, mountains, and the crust itself

150 My Reconstruction

Do the plates move?

Do the plates move? If so, why?

Causes of Plate Motion

Mantle Convection

- Basic <u>driving force</u> for plate movement
- The unequal distribution of heat within Earth causes thermal convection the drives plate motion

Plate Boundary Activities

- Seismic activity Earthquakes!
- Volcanism
- Mountain Building
- Sea Floor Spreading

Divergent Boundaries

Also called spreading centers When two plates move <u>apart</u> Creates new <u>seafloor</u> (seafloor spreading) Causes ocean ridges and rift valleys

DIVERGENT BOUNDARY

Convergent Boundaries

Oceanic-	Continental-	Oceanic-
Continental	Continental	Oceanic
boundaries	Boundaries	boundaries
Causes subduction zones, trenches, continental volcanic arcs	Two plates collide - Forms mountains	One oceanic plate goes beneath another oceanic plate Creates volcanic island arcs

What is a volcano?

A mountain <u>formed of lava</u>

and/or pyroclastic material

Magma vs. Lava

Magma – molten rock <u>within</u> Earth Lava – molten rock <u>on</u> Earth's surface

Gases

- 70% water vapor
- 15% carbon dioxide
- 5% nitrogen
- 5% sulfur
- **Pyroclastic material**
 - Fragments <u>ejected</u> during eruptions
 - Varies in size from very fine and volcanic ash to pieces that weigh several tons

Hot Spots

 Small volcanic region a few hundred kilometers across within a plate
 Ex: Hawaiian Island

Transform Boundaries

- Two plates grind <u>past each</u>
 <u>other</u> without production and destruction of lithosphere
- Ex: San Andreas Fault in California
- <u>Plate Boundary Rap</u>

TRANSFORM FAULT BOUNDARY

Evidence of Plate Tectonics

Paleomagnetism Earthquake patterns Ocean Drilling: Hot Spots: supports that the plates move over Earth's surface

Faults

- Faults are formed by <u>fractures</u> in rocks
- Parts of a Fault
 - Hanging wall: rock above the fault line
 - Foot Wall: rock
 below the fault line

Earthquakes

<complex-block>

What is an earthquake?

- Vibration of Earth produced by a sudden release of energy
- Movements along the fault line.

Focus, Epicenter and Faults

- Focus point within the Earth where the Earthquake starts
- Epicenter location on the surface of Earth directly <u>above the focus</u>
- Fault associated with earthquake activity where <u>movement has occurred</u>

1111

Earthquake waves

wave direction Rayleigh wave

DUIII:

IIIIii

Surface

- Seismic waves that travel along Earth's outer layer
- Most <u>destructive</u> earthquake waves
- Last to arrive at the seismograph

Earthquake waves

P waves

- Can travel through solid, liquid, and gas
- <u>Fastest</u> waves

•S waves

- •Can only travel through <u>solids</u>
- •Slower than P waves but faster than surface
- waves

Intensity and Magnitude of Earthquakes

- Intensity A measure of the amount of earthquake shaking at a given location Magnitude
- the amount of energy released
- at the source of an
- earthquake
- Scale 0–10, 2.5 is the weakest
- damage

Community Internet Intensity Map for Northridge (Jan 17 1994) 04:30:55 PST Mag=6.7 Latitude=N34.21 Longitude=W118.54

VI

Light Moderate Moderate/Heavy

Not feit Weak Light Moderate Strong Very strong

Tsunami

- Seismic sea waves
- Triggered by an earthquake occurring where a <u>slab of the ocean</u> <u>floor</u> is displaced vertically along a fault

Other Dangers

- Landslides
 - Sinking of the ground triggered by the vibration
 - Greatest damage to structures
- Fires
 - Caused by ruptured gas lines

Predicting Earthquakes

- Short range
 - Methods for short range predictions of earthquakes have not been successful
- Long range
 - Based on the idea that earthquakes are repetitive
 - Seismic gap: an area along a fault where there has not been any earthquake for a

Aftermath of an earthquake in Japan, 2004 Photograph by Kimimasa Mayama/Reuters

Virtual Earthquake

- http://www.sciencecourseware.com/eec/Eart hquake/
- Main Activities: Time travel Graph
 - Recommended: Tutorials (top right)
 - Tasks use different tools to gather and record in journal at bottom of screen
 - Show teacher after you verify your answers
- Main Activities: Epicenter and Magnitude

Plate Tectonics and Igneous Activity

- The basic connections between plate tectonics and volcanism is that plate motion provide the mechanisms by which mantle rock melt to generat magma
- **Ring of Fire:** area around the pacific ocean with extreme volcanic activity

Intraplate Activity

- Occurs within a plate, not plate boundary
- Most intraplate volcanism occurs where a mass of hotter than normal mantle material called mantle plumes rise toward the surface

